

Subject: SOFTWARE ENGINEERING

III Semester Subject Code: 3CS4-07

SYLLABUS

UNIT 1: Introduction, software life-cycle models, software requirements specification,

formal requirements specification, verification and validation.

UNIT 2: Software Project Management: Objectives, Resources and their estimation, LOC

and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software

project scheduling.

UNIT 3: Requirement Analysis: Requirement analysis tasks, Analysis principles. Software

prototyping and specification data dictionary, Finite State Machine (FSM) models.

Structured Analysis: Data and control flow diagrams, control and process specification

behavioral modeling

UNIT 4: Software Design: Design fundamentals, Effective modular design: Data

architectural and procedural design, design documentation.

UNIT 5: Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling.

Object Oriented Design: OOD concepts, Class and object relationships, object

modularization, Introduction to Unified Modeling Language

UNIT -2 SOFTWARE PROJECT MANAGEMENT

OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates are

made within a limited time frame at the beginning of a software project and should be

updated regularly as the project progresses. In addition, estimates should attempt to define

best case and worst case scenarios so that project outcomes can be bounded. The planning

objective is achieved through a process of information discovery that leads to reasonable

estimates. In the following sections, each of the activities associated with software project

planning is discussed.

RESOURCES

The second software planning task is estimation of the resources required to accomplish the

software development effort. Figure illustrates development resources as a pyramid. The

development environment—hardware and software tools—sits at the foundation of the

resources pyramid and provides the infrastructure to support the development effort. At a

higher level, we encounter reusable software components— software building blocks that can

dramatically reduce development costs and accelerate delivery. At the top of the pyramid is

the primary resource—people. Each resource is specified with four characteristics:

description of the resource, a statement of availability, time when the resource will be

required; duration of time that resource will be applied. The last two characteristics can be

viewed as a time window.

Availability of the resource for a specified window must be established at the earliest

practical time.

HUMAN RESOURCES

The planner begins by evaluating scope and selecting the skills required to complete

development. Both organizational position (e.g., manager, senior software engineer) and

specialty (e.g., telecommunications, database, client/server) are specified. For relatively small

projects (one person-year or less), a single individual may perform all software engineering

tasks, consulting with specialists as required. The number of people required for a software

project can be determined only after an estimate of development effort (e.g., person-months)

is made.

REUSABLE SOFTWARE RESOURCES

Component-based software engineering (CBSE)5 emphasizes reusability—that is, the

creation and reuse of software building blocks [HOO91]. Such building blocks, often called

components, must be cataloged for easy reference, standardized for easy application, and

validated for easy integration.

Bennatan [BEN92] suggests four software resource categories that should be considered as

planning proceeds:

Off-the-shelf components.

 Existing software that can be acquired from a third party or that has been developed

internally for a past project. COTS (commercial off-the-shelf) components are purchased

from a third party, are ready for use on the current project, and have been fully validated.

Full-experience components.

Existing specifications, designs, code, or test data developed for past projects that are similar

to the software to be built for the current project. Members of the current software team have

had full experience in the application area represented by these components. Therefore,

modifications required for full-experience components will be relatively low-risk.

Partial-experience components.

Existing specifications, designs, code, or test data developed for past projects that are related

to the software to be built for the current project but will require substantial modification.

Members of the current software team have only limited experience in the application area

represented by these components. Therefore, modifications required for partial-experience

components have a fair degree of risk.

New components.

 Software components that must be built by the software team specifically for the needs of the

current project. The following guidelines should be considered by the software planner when

reusable components are specified as a resource.

DECOMPOSITION TECHNIQUES

Software Sizing

“Fuzzy logic” sizing. This approach uses the approximate reasoning techniques that are the

cornerstone of fuzzy logic. To apply this approach, the planner must identify the type of

application, establish its magnitude on a qualitative scale, and then refine the magnitude

within the original range. Although personal experience can be used, the planner should also

have access to a historical database of projects so that estimates can be compared to actual

experience.

Function point sizing

Standard component sizing. For example, the standard components for an information system

are subsystems, modules, screens, reports, interactive programs, batch programs, files, LOC,

and object-level instructions. The project planner estimates the number of occurrences of

each standard component and then uses historical project data to determine the delivered size

per standard component. To illustrate, consider an information systems application. The

planner estimates that 18 reports will be generated. Historical data indicates that 967 lines of

COBOL are required per report. This enables the planner to estimate that 17,000 LOC will

be required for the reports component. Similar estimates and computation are made for other

standard components, and a combined size value (adjusted statistically) results.

Change sizing. This approach is used when a project encompasses the use of existing

software that must be modified in some way as part of a project. The planner estimates the

number and type (e.g., reuse, adding code, changing code, deleting code) of modifications

that must be accomplished. Using an “effort ratio”for each type of change, the size of the

change may be estimated

Problem-Based Estimation

LOC-Based Estimation

FP BASED ESTIMATION:

Process-Based Estimation

Example: Compute the function point, productivity, documentation, cost per function for the
following data:

1. Number of user inputs = 24

2. Number of user outputs = 46

3. Number of inquiries = 8

4. Number of files = 4

5. Number of external interfaces = 2

6. Effort = 36.9 p-m

7. Technical documents = 265 pages

8. User documents = 122 pages

9. Cost = $7744/ month

Various processing complexity factors are: 4, 1, 0, 3, 3, 5, 4, 4, 3, 3, 2, 2, 4, 5.

Solution:

Measurement Parameter Count Weighing factor

1. Number of external inputs (EI) 24 * 4 = 96

2. Number of external outputs (EO) 46 * 4 = 184

3. Number of external inquiries (EQ) 8 * 6 = 48

4. Number of internal files (ILF) 4 * 10 = 40

5. Number of external interfaces (EIF)

Count-total →

2 * 5 = 10

378

So sum of all fi (i ← 1 to 14) = 4 + 1 + 0 + 3 + 5 + 4 + 4 + 3 + 3 + 2 + 2 + 4 + 5 = 43

 FP = Count-total * [0.65 + 0.01 *∑(fi)]
 = 378 * [0.65 + 0.01 * 43]

 = 378 * [0.65 + 0.43]
 = 378 * 1.08 = 408

Total pages of documentation = technical document + user document
 = 265 + 122 = 387pages

Documentation = Pages of documentation/FP
 = 387/408 = 0.94

Differentiate between FP and LOC

FP LOC

1. FP is specification based. 1. LOC is an analogy based.

2. FP is language independent. 2. LOC is language dependent.

3. FP is user-oriented. 3. LOC is design-oriented.

4. It is extendible to LOC. 4. It is convertible to FP (backfiring)

PROJECT PLANNING OBJECTIVES

The objective of software project planning is to provide a framework that enables the

manager to make reasonable estimates of resources, cost, and schedule. These estimates are

made within a limited time frame at the beginning of a software project and should be

updated regularly as the project progresses. In addition, estimates should attempt to define

best case and worst case scenarios so that project outcomes can be bounded.

The planning objective is achieved through a process of information discovery that leads to

reasonable estimates. In the following sections, each of the activities associated with software

project planning is discussed.

THE COCOMO MODEL

COCOMO (Constructive Cost Model) is a regression model based on LOC, i.e number of

Lines of Code. It is a procedural cost estimate model for software projects and often used

as a process of reliably predicting the various parameters associated with making a project

such as size, effort, cost, time and quality. It was proposed by Barry Boehm in 1970 and is

based on the study of 63 projects, which make it one of the best-documented models.

The key parameters which define the quality of any software products, which are also an

outcome of the COCOMO are primarily Effort & Schedule:

 Effort: Amount of labor that will be required to complete a task. It is measured in

person-months units.

 Schedule: Simply means the amount of time required for the completion of the job,

which is, of course, proportional to the effort put. It is measured in the units of time such

as weeks, months.

Different models of COCOMO have been proposed to predict the cost estimation at different

levels, based on the amount of accuracy and correctness required. All of these models can

be applied to a variety of projects, whose characteristics determine the value of constant to

be used in subsequent calculations. These characteristics pertaining to different system

types are mentioned below.

Boehm’s definition of organic, semidetached, and embedded systems:

1. Organic – A software project is said to be an organic type if the team size required is
adequately small, the problem is well understood and has been solved in the past and
also the team members have a nominal experience regarding the problem.

2. Semi-detached – A software project is said to be a Semi-detached type if the vital
characteristics such as team-size, experience, knowledge of the various programming
environment lie in between that of organic and Embedded. The projects classified as
Semi-Detached are comparatively less familiar and difficult to develop compared to the
organic ones and require more experience and better guidance and creativity. Eg:
Compilers or different Embedded Systems can be considered of Semi-Detached type.

3. Embedded – A software project with requiring the highest level of complexity,
creativity, and experience requirement fall under this category. Such software requires
a larger team size than the other two models and also the developers need to be
sufficiently experienced and creative to develop such complex models.

All the above system types utilize different values of the constants used in Effort
Calculations.

Types of Models: COCOMO consists of a hierarchy of three increasingly detailed and
accurate forms. Any of the three forms can be adopted according to our requirements.
These are types of COCOMO model:

1. Basic COCOMO Model
2. Intermediate COCOMO Model
3. Detailed COCOMO Model

The first level, Basic COCOMO can be used for quick and slightly rough calculations of
Software Costs. Its accuracy is somewhat restricted due to the absence of sufficient factor
considerations.
Intermediate COCOMO takes these Cost Drivers into account and Detailed
COCOMO additionally accounts for the influence of individual project phases, i.e in case of
Detailed it accounts for both these cost drivers and also calculations are performed phase
wise henceforth producing a more accurate result. These two models are further discussed
below.

Estimation of Effort: Calculations –

1. Basic Model –

The above formula is used for the cost estimation of for the basic COCOMO model, and
also is used in the subsequent models. The constant values a,b,c and d for the Basic
Model for the different categories of system:

SOFTWARE PROJECTS a b c d

Organic 2.4 1.05 2.5 0.38

Semi Detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

The effort is measured in Person-Months and as evident from the formula is dependent
on Kilo-Lines of code.

The development time is measured in Months.

These formulas are used as such in the Basic Model calculations, as not much
consideration of different factors such as reliability, expertise is taken into account,
henceforth the estimate is rough.

2. Intermediate Model –
The basic Cocomo model assumes that the effort is only a function of the number of
lines of code and some constants evaluated according to the different software system.
However, in reality, no system’s effort and schedule can be solely calculated on the
basis of Lines of Code. For that, various other factors such as reliability, experience,
Capability. These factors are known as Cost Drivers and the Intermediate Model utilizes
15 such drivers for cost estimation.

Classification of Cost Drivers and their attributes:

(i) Product attributes –
 Required software reliability extent
 Size of the application database
 The complexity of the product

(ii) Hardware attributes –
 Run-time performance constraints
 Memory constraints
 The volatility of the virtual machine environment
 Required turnabout time

(iii) Personnel attributes –
 Analyst capability
 Software engineering capability
 Applications experience
 Virtual machine experience
 Programming language experience

(iv) Project attributes –
 Use of software tools

 Application of software engineering methods
 Required development schedule

COST DRIVERS

VERY

LOW LOW NOMINAL HIGH

VERY

HIGH

1. Product Attributes

Required Software Reliability 0.75 0.88 1.00 1.15 1.40

Size of Application Database

0.94 1.00 1.08 1.16

Complexity of The Product 0.70 0.85 1.00 1.15 1.30

2. Hardware Attributes

Runtime Performance

Constraints

1.00 1.11 1.30

Memory Constraints

1.00 1.06 1.21

Volatility of the virtual machine

environment

0.87 1.00 1.15 1.30

Required turnabout time

0.94 1.00 1.07 1.15

3. Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82

Software engineer capability 1.42 1.17 1.00 0.86 0.70

Virtual machine experience 1.21 1.10 1.00 0.90

Programming language

experience 1.14 1.07 1.00 0.95

4. Project Attributes

Application of software

engineering methods 1.24 1.10 1.00 0.91 0.82

Use of software tools 1.24 1.10 1.00 0.91 0.83

Required development schedule 1.23 1.08 1.00 1.04 1.10

The project manager is to rate these 15 different parameters for a particular project on
a scale of one to three. Then, depending on these ratings, appropriate cost driver
values are taken from the above table. These 15 values are then multiplied to calculate
the EAF (Effort Adjustment Factor). The Intermediate COCOMO formula now takes the
form:

The values of a and b in case of the intermediate model are as follows:

SOFTWARE PROJECTS a b

Organic 3.2 1.05

Semi Detached 3.0 1.12

Embeddedc 2.8 1.20

2. Detailed Model –
Detailed COCOMO incorporates all characteristics of the intermediate version with an
assessment of the cost driver’s impact on each step of the software engineering
process. The detailed model uses different effort multipliers for each cost driver

attribute. In detailed cocomo, the whole software is divided into different modules and
then we apply COCOMO in different modules to estimate effort and then sum the effort.
The Six phases of detailed COCOMO are:

1. Planning and requirements
2. System design
3. Detailed design
4. Module code and test
5. Integration and test
6. Cost Constructive model

The effort is calculated as a function of program size and a set of cost drivers are given
according to each phase of the software lifecycle.

RISK ANALYSIS

First, risk concerns future happenings. Today and yesterday are beyond active concern, as we

are already reaping what was previously sowed by our past actions. The question is, can we,

therefore, by changing our actions today, create an opportunity for a different and hopefully

better situation for ourselves tomorrow. This means second, that risk involves change, such as

in changes of mind, opinion, actions, or places . . . [Third,] risk involves choice, and the

uncertainty that choice itself entails.

What is it?

Risk analysis and management are a series of steps that help a software team to understand

and manage uncertainty. Many problems can plague a software project. A risk is a potential

problem—it might happen, it might not. But, regardless of the outcome, it’s a really good

idea to identify it, assess its probability of occurrence, estimate its impact, and establish a

contingency plan should the problem actually occur.

Who does it?

Everyone involved in the software process—managers, software engineers, and customers

participate in risk analysis and management.

SOFTWARE RISKS

There is general agreement that risk always involves two characteristics

 • Uncertainty—the risk may or may not happen; that is, there are no 100% probable risks.

 • Loss—if the risk becomes a reality, unwanted consequences or losses will occur.

When risks are analyzed, it is important to quantify the level of uncertainty and the degree of

loss associated with each risk. To accomplish this, different categories of risks are

considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, customer, and

requirements problems and their impact on a software project. project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a

technical risk becomes a reality, implementation may become difficult or impossible.

Technical risks identify potential design, implementation, interface, verification, and

maintenance problems. In addition, specification ambiguity, technical uncertainty, technical

obsolescence, and "leading-edge" technology are also risk factors. Technical risks occur

because the problem is harder to solve than we thought it would be.

Business risks threaten the viability of the software to be built. Business risks often

jeopardize the project or the product. Candidates for the top five business risks are

(1) building a excellent product or system that no one really wants (market risk),

(2)building a product that no longer fits into the overall business strategy for the company

(strategic risk)

(3) building a product that the sales persons doesn't understand how to sell

(4) losing the support of senior management due to a change in focus or a change in people

(management risk)

(5) losing budgetary or personnel commitment (budget risks).

It is extremely important to note that simple categorization won't always work. Some risks

are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette [CHA89]. Known

risks are those that can be uncovered after careful evaluation of the project plan, the business

and technical environment in which the project is being developed, and other reliable

information sources (e.g., unrealistic delivery date, lack of documented requirements or

software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests

are serviced).

Unpredictable risks are the joker in the deck. They can and do occur, but they are extremely

difficult to identify in advance.

RISK IDENTIFICATION

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks for each of the categories that have been presented earlier

: generic risks and product-specific risks.

Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the

technology, the people, and the environment that is specific to the project at hand. To identify

product-specific risks, the project plan and the software statement of scope are examined and

an answer to the following question is developed: "What special characteristics of this

product may threaten our project plan?"

One method for identifying risks is to create a risk item checklist. The checklist can be used

for risk identification and focuses on some subset of known and predictable risks in the

following generic subcategories:

• Product size—risks associated with the overall size of the software to be built or modified.

• Business impact—risks associated with constraints imposed by management or the

marketplace.

• Customer characteristics—risks associated with the sophistication of the customer and the

developer's ability to communicate with the customer in a timely manner.

• Process definition—risks associated with the degree to which the software process has been

defined and is followed by the development organization.

• Development environment—risks associated with the availability and quality of the tools to

be used to build the product.

• Technology to be built—risks associated with the complexity of the system to be built and

the "newness" of the technology that is packaged by the system.

• Staff size and experience—risks associated with the overall technical and project experience

of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the

topics can be answered for each software project. The answers to these questions allow the

planner to estimate the impact of risk. A different risk item checklist format simply lists

characteristics that are relevant to each generic subcategory. Finally, a set of “risk

components and drivers" [AFC88] are listed along with their probability Although generic

risks are important to consider, usually the product-specific risks cause the most headaches.

Be certain to spend the time to identify as many product-specific risks as possible.

RISK COMPONENT & DRIVERS

The risk components are defined in the following manner:

• Performance risk—the degree of uncertainty that the product will meet its requirements and

be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be maintained.

• Support risk—the degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

All of the risk analysis activities presented to this point have a single goal—to assist the

project team in developing a strategy for dealing with risk. An effective strategy must

consider three issues:

• risk avoidance

• risk monitoring

• risk management and contingency planning

SOFTWARE PROJECT SCHEDULING

Software project scheduling is an activity that distributes estimated effort across the planned

project duration by allocating the effort to specific software engineering tasks. During early

stages of project planning, a macroscopic schedule is developed. This type of schedule

identifies all major software engineering activities and the product functions to which they

are applied. As the project gets under way, each entry on the macroscopic schedule is refined

into a detailed schedule. Here, specific software tasks (required to accomplish an activity) are

identified and scheduled. Scheduling for software engineering projects can be viewed from

two rather different perspectives. In the first, an end-date for release of a computer-based

system has already (and irrevocably) been established. The software organization is

constrained to distribute effort within the prescribed time frame. The second view of software

scheduling assumes that rough chronological bounds have been discussed but that the end-

date is set by the software engineering organization. Effort is distributed to make best use of

resources and an end-date is defined after careful analysis of the software. Unfortunately, the

first situation is encountered far more frequently than the second. Like all other areas of

software engineering, a number of basic principles guide

software project scheduling:

Compartmentalization. The project must be compartmentalized into a number of

manageable activities and tasks. To accomplish compartmentalization, both the product and

the process are decomposed .

Interdependency. The interdependency of each compartmentalized activity or task must be

determined. Some tasks must occur in sequence while others can occur in parallel. Some

activities cannot commence until the work product produced by another is available. Other

activities can occur independently.

Time allocation. Each task to be scheduled must be allocated some number of work units

(e.g., person-days of effort). In addition, each task must be assigned a start date and a

completion date that are a function of the interdependencies and whether work will be

conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of staff members. As time allocation

occurs, the project manager must ensure that no more than the allocated number of people

have been scheduled at any given time. For example, consider a project that has three

assigned staff members (e.g., 3 person-days are available per day of assigned effort5). On a

given day, seven concurrent tasks must be accomplished. Each task requires 0.50 person days

of effort. More effort has been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a specific team

member.

Defined outcomes. Every task that is scheduled should have a defined outcome. For software

projects, the outcome is normally a work product (e.g. the design of a module) or a part of a

work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a project

milestone. A milestone is accomplished when one or more work products has been reviewed

for quality and has been approved.

Each of these principles is applied as the project schedule evolves.

SCHEDULING

Scheduling of a software project does not differ greatly from scheduling of any multitask

engineering effort. Therefore, generalized project scheduling tools and techniques can be

applied with little modification to software projects.

Program evaluation and review technique (PERT) and critical path method (CPM)

[MOD83] are two project scheduling methods that can be applied to software development.

Both techniques are driven by information already developed in earlier project planning

activities:

• Estimates of effort

• A decomposition of the product function

• The selection of the appropriate process model and task set

• Decomposition of tasks

Interdependencies among tasks may be defined using a task network. Tasks, sometimes

called the project work breakdown structure (WBS), are defined for the product as a whole or

for individual functions.

Both PERT and CPM provide quantitative tools that allow the software planner to

(1) determine the critical path—the chain of tasks that determines the duration of the project;

(2) establish “most likely” time estimates for individual tasks by applying statistical models;

(3) calculate “boundary times” that define a time "window" for a particular task.

Boundary time calculations can be very useful in software project scheduling. Slippage in the

design of one function, for example, can retard further development of other functions.

Riggs describes important boundary times that may be discerned from a PERT or CPM

network:

(1) the earliest time that a task can begin when all preceding tasks are completed in the

shortest possible time,

(2) the latest time for task initiation before the minimum project completion time is delayed,

(3) the earliest finish—the sum of the earliest start and the task duration,

(4) the latest finish the latest start time added to task duration, and

(5) the total float—the amount of surplus time or leeway allowed in scheduling tasks so that

the network critical path is maintained on schedule. Boundary time calculations lead to a

determination of critical path and provide the manager with a quantitative method for

evaluating progress as tasks are completed.

